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• An integrated relational database management system (RDBMS),
• The ability to query to an integrated RDBMS database directly

and provide relevant statistics,
• An accident prediction and analysis module applied to different

route locations, and
• A GIS platform for visual display of spatial analysis.

This model makes use of GIS ArcView and the Visual Basic pro-
gram language as the architecture of the GIS road accident model.
ArcView was developed by ERIS, Inc.

The GIS platform enables the user to appreciate visually the results
of any analysis on the integrated data, whether to predict accidents,
analyze their attributes or pattern, or underscore the relationships that
give rise to these accidents at a given location at a specific point in
time. With the functionality of visualizing the results, the GIS acci-
dent prediction module shown in Figure 1 serves as a useful tool
for making informed decisions on how to reduce accidents at specific
locations, along specific routes, or over the entire road network.

In this study, GIS has been linked to a user-friendly application
developed in Visual Basic. The application makes use of a sample
of road sections from the Ontario highway network to illustrate the
usefulness of the model as a decision-support tool for road accident
reduction. Various branches of the Ontario Ministry of Transportation
(MTO) collect and manage these databases.

ACCIDENT PREDICTION MODULE

The accident prediction module in the GIS model illustrated in Fig-
ure 1 establishes the long-term potential for accidents at a specific
location for a given period. The pattern of these accidents can then
be investigated to provide insight into how they are caused and what
can be done to reduce incidence. Many of the existing GIS road
safety models are limited to accessing information directly from
the raw databases and to drawing inference from these data to pre-
dict the probability of an accident taking place at a given location
or route (4).

Unfortunately, because of the rare and random nature of acci-
dents, inferring a potential for accidents at a given location solely
from the historical accident data will not always yield consistent
long-term results. Most locations do not experience many accidents
in any given year. Observations tend to be too infrequent and too
variable to yield meaningful and reliable long-term analysis. The
GIS model presented here uses two statistical accident prediction
methods to establish the long-term potential for accidents at a given
location. These are the Poisson regression model and the empirical
Bayesian (EB) model.

The applicability and reliability of accident analysis and prediction
models depend on their ability to integrate relevant input from disparate
databases in a seamless and automated manner. These inputs include
information on road geometry, traffic composition, accident profiles, and
spatial referencing. With powerful functionality in spatial referencing,
data management, and visualization, geographic information systems
(GISs) provide a natural platform for this type of model. An integrated
and user-friendly GIS platform for road accident analysis and prediction
is described. To demonstrate this platform, it has been applied to safety
problems specified at different levels of spatial aggregation, from indi-
vidual route sections to the overall network. The model was developed by
using databases obtained from the Ontario Ministry of Transportation.

Models of road accident prediction require input from a large num-
ber of disparate databases, including information on road geometry,
traffic volume, accidents, and weather conditions. These databases
are collected by different agencies for essentially different purposes.
As a result, they tend to lack a common referencing system needed
for their integration into accident prediction models. The applica-
bility and reliability of these models depend to a large extent on
the ability to integrate these relevant databases in a seamless and
automated manner.

With powerful functionality in spatial referencing, data manage-
ment, and visualization, geographic information systems (GISs) pro-
vide a natural platform for the analysis of road accidents (1). As a
result, many road safety organizations have introduced GIS into their
overall road safety management program (2, 3). However, existing
GIS road safety models are limited to accessing information directly
from the raw databases or to drawing inference from overly simpli-
fied models regarding the potential for accidents at a given location
or route.

This paper describes a GIS-based integrated model of road accident
analysis and prediction. This model predicts accidents at different lev-
els of spatial aggregation as specified by the analyst for different prob-
lems, and it provides a user-friendly interactive interface with which
to develop and evaluate alternative safety countermeasures.

MODEL FRAMEWORK

As illustrated in Figure 1, the main features of the described GIS
model are as follows:
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Both the Poisson and EB models relate accident potentials at
specific road locations to various contributing factors.

For the GIS road accident module considered here, a route section–
specific Poisson regression model developed by Nassar (5) and Nas-
sar et al. (6) and based on the same Ontario data was used. This model
is of the form

where

E(m)i = expected accident frequencies on road section i,
ADTL = annual average daily traffic (AADT) per lane in thou-

sands of vehicles on road section i,
LEN = length of road section i (km),

LN = number of lanes on road section i,
SHW = shoulder width of road section i (m),
MT2 = median type two of road section i (0 = painted, 1 =

barrier),
TS = traffic signal on road section i (0 = no, 1 = yes),

PTC = pattern type commuter on road section i (0 combined, 
1 = commuter), and

Y91 = year 1991 (0 = 92, 1 = 91).

Statistical prediction models, such as the Poisson regression mod-
els, frequently are plagued by poor specification. Information on
factors affecting variations in accident potential at a given location
is often incomplete and is insufficient to adequately explain differ-
ences in the potential for accidents from year to year. When such
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models are applied to a given accident database, they often lead to
overdispersion error.

The accident model proposed by Nassar and Nassar et al. is useful
and applicable when the independent variables with respect to which
the proposed analysis is desired are included in the model (5, 6).
Therefore, to analyze accident involvement based on a random vari-
able not included in the model, a different method must be adopted.
The empirical Bayesian method, explained later, was used for this
purpose.

Hauer and Persaud suggested that if the expected number of acci-
dents on each road section can be described by a gamma probability
distribution, the count of accidents should obey a negative bino-
mial distribution (7–10). Dean and Lawless suggested that negative
binomial distribution models are most suitable for dealing with
count data that display extra-Poisson variation (11). In this case, the
variation is proportional, rather than equal, to the mean. The GLIM
user’s guide (12) suggests an expression for the variance of the form

where

Var(X )i = variance in accident frequencies for road section i,
E(m)i = expected accident frequencies on road section i (model

estimates), and
k = dispersion parameter.

For sections that behave in a Poisson manner, assume that Var(X )i

= E(m)i in Equation 2. The value of the dispersion parameter in this
equation is unknown and needs to be established as a preliminary
step in accounting for extra-Poisson variation in the accident data.

In fitting the extra-Poisson model, weights are assigned to points
(Poisson fitted values) in proportion to the ratio of the Poisson model

Var X E m E m ki i i( ) = ( ) + ( )[ ] 2 2( )

FIGURE 1 GIS-based road accident model.



variance [E(m)i] over the extra-Poisson variance in Equation 2
such that

The weights in Equation 3 are given to each point during fitting
so that the variances of the individual points are divided by these
weights (12). The model can fit as a Poisson model by using a quasi-
maximum-likelihood method to estimate the Poisson parameters.

For an individual road section i in group j, the Bayesian adjusted
or estimated number of accident involvement per year �i is expressed
as a combination of E(m)i , the estimated/predicted number of acci-
dent involvement based on group j to which road section i belongs and
Xi the observed number of accident involvement for road section i,
such that

The term E(m)i in Equation 4 represents the estimated/predicted
number of accident involvement for road section i averaged over all
road sections in group j. As already stated, E(m)i is assumed to be
gamma distributed and Xi to have negative binomial distribution.
The parameter Wi reflects the extent to which the group estimated
number of accident involvement and the observed number of acci-
dent involvement for a given road section are combined to yield the
adjusted expectation of number of accident involvement for this
road section i. Wi is obtained as explained in Equation 3.

Nassar et al. investigated the presence of Poisson overdispersion in
the Ontario accident data and suggested incorporating an EB adjust-
ment factor (6). In this paper, both the Poisson and the EB adjusted
estimates were used to reflect the long-term potential for accidents
at individual locations or route sections.

By comparing the potential for accidents from either the Poisson
regression or EB prediction models with the observed number of
accidents at a given location, it can be determined if certain loca-
tions should be designated as unsafe; these are referred to as black
spot (BS) locations. The approach for identifying BS is discussed
at length by Persaud (9) and Chong (13). A thorough understand-
ing of the causes and consequences of accidents at BS locations
should guide decisions on what safety countermeasures should be
implemented at these locations.

DATA SOURCES AND THEIR INTEGRATION

As discussed, accident analysis and prediction models require a
wide variety of data on road geometry, traffic composition, weather
conditions, and accidents. The integration of these disparate data-
bases requires a formal treatment of errors and inconsistencies so
that they can be combined in a spatially consistent manner.

Relevant MTO Databases

MTO uses a linear highway reference system (LHRS) to uniquely
identify a continuous length of highway with similar geometric and
traffic characteristics. Typically, each LHRS section has a length of
0.2 to 18.2 km. An offset distance is used to assign a road accident to
a given point location on the LHRS section. The offset is measured
from a known section feature point (e.g., a bridge overpass) to point
of occurrence of the accident. This known feature point is measured
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at some distance from the beginning of the LHRS section in which
the feature is situated. The LHRS number and the offset distance rep-
resent the most disaggregate spatial referencing system for the road
network that are presently used in accident reporting.

Four MTO databases are considered relevant in this GIS-based
accident model:

• Digital cartographic reference base (DCRB),
• Accident data system (ADS),
• Highway inventory management system (HIMS), and
• Traffic volume inventory system (TVIS).

A sample of information available in these databases is provided in
Table 1.

The DRCB is a geocoded database that contains information on
road network and other features, such as rail network, lakes, parks,
rivers, and streams, in Ontario. Only the road data were taken from
this database. This database is in GIS format and can be used for
viewing with ArcView.

In Ontario, accident data are collected by police and are com-
piled yearly by the MTO. The ADS data are stored in the following
separate formats:

• Basic accident record: contains information that is unique to
each accident, such as date, time, location, number of vehicles and
persons involved, number of fatalities, road conditions, and several
other details. Each accident is identified by a unique nine-digit num-
ber (accident microfilm number) and the LHRS number (referred to
as the key point number in ADS).

• Driver and vehicle record: contains information unique to each
driver and vehicle involved in the accident, such as plate number,
year and make of vehicle, driver license number, driver date of birth,

TABLE 1 Data Available in Different MTO Databases
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action of driver, damage caused, and condition of the vehicle. Each
record is uniquely identified by the driver or vehicle number and the
corresponding accident microfilm number.

• Involved person(s) record: contains information that is unique to
each occupant of every vehicle involved in an accident. This includes
information on injury sustained, seating position in the vehicle, age
and condition of the occupant, and use of seat belt. Each record is
uniquely identified by the person number and the corresponding
accident microfilm number.

Table 1 provides some important variables included in the ADS.
Each record included is uniquely identified by the key point number
(same as the LHRS number) and the accident microfilm number.

The HIMS database contains information about the geometric
features of each LHRS section, including length of each section
(subsection), from and to locations, number of lanes, road width,
shoulder width, median width, type of shoulder, type of median, and
posted speed. A sample of the information available in HIMS is
shown in Table 1.

The TVIS database contains information regarding existing traffic
volume, projected future traffic volume, summer and winter traffic
volumes, directional split, and percent commuter traffic.

Treatment of Errors and Inconsistencies in
Integrating Databases

The DCRB database as developed by MTO was geocoded in a spa-
tially usable format for input into GIS. The geocoded DCRB data-
base contains a set of homogeneous highway sections, which are
uniquely identified by their LHRS number, and a unique pair of X
and Y coordinates representing the beginning point of the LHRS sec-
tion. This information combined with section length can be used to

identify the section (X, Y ) endpoint coordinates. For this analysis, it
was assumed that all sections are linear.

It was assumed that the information available in the DRCB data-
base is correct and all other databases will be edited or modified per
the information available in this database.

HIMS

In matching HIMS to DCRB, three types of error were investigated:

• Type 1 error. Some LHRS numbers of DCRB were missing in
the HIMS database, but the section lengths of the adjoining LHRS
sections in HIMS indicate that the two records of DCRB have been
merged into one record in HIMS. Therefore, the record in HIMS
was split into two records.

• Type 2 error. A few LHRS lengths were unequal in DCRB and
HIMS, but the combined length of adjacent LHRS numbers in DCRB
had the same length as that of HIMS, and thus the lengths were
adjusted accordingly in HIMS.

• Type 3 error. Lengths of a few LHRS sections in HIMS did not
exactly match those of DCRB, and the lengths were adjusted per the
lengths indicated in DCRB.

Tables 2 through 4 indicate how each error was considered in
developing an integrated database for input into GIS for several
sample sections in the network.

It should be noted that the preceding adjustments for HIMS errors
do not follow a definite pattern, precluding the possibility of cor-
recting these errors through an automated process. The Microsoft
Access subform feature was used to expedite this process. The HIMS
database was linked to the DCRB database as a child form and fed
all the corresponding records for a given LHRS number, which made
the editing easy.

TABLE 2 Type 1 Error in HIMS and Adjusted Values



TABLE 3 Type 2 Error in HIMS and Adjusted Values

TABLE 4 Type 3 Error in HIMS and Adjusted Values



TVIS

Errors in the traffic volume database were found to be similar to
those in HIMS. The only exception was that traffic records for a few
LHRS sections were missing.

Because of a lack of other information, traffic volumes on these
sections were assumed to be the same as those of the adjacent section.
For TVIS, the manual adjustment process was used.

ADS

The modification of the accident database was automated by using
a Visual Basic program that assigned the accident to the correct
LHRS and also calculated the location of the accident from the start
of the highway. This was required for plotting on the map with GIS
ArcView software.

The ADS database contained two types of errors that were con-
sidered in integrating the databases for GIS input. In one error, there
was an unmatched key point number when the record was compared
to the DCRB. Because there was no way to ascertain the correct

198 Paper No. 01-2214 Transportation Research Record 1768

LHRS number, these records were deleted from the accident data-
base. Occurrence of this kind of record varied from 1 to 2 percent,
and it is assumed that the deletion will not have a significant effect
on the result. In the other error, an accident was attributed to a wrong
key point number (LHRS), because the distances mentioned for the
location of the accident from the start of the key point were based
on the mileage of the feature point and distance and the direction of
the accident from the feature point. Therefore, it was necessary to
establish the direction in which the LHRS numbers increased so that
the exact location of the accident on the highway and the correct
LHRS number to which the accident is attributed could be deter-
mined. This was necessary for locating the accident in ArcView. Fig-
ure 2 demonstrates how the accidents were allocated to the correct
LHRS number.

ILLUSTRATIVE EXAMPLES

To illustrate the GIS model, five types of transportation query were
postulated:

FIGURE 2 Allocation of accident to correct LHRS number.
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• Simple spatial or general query of the integrated database to
retrieve attributes of roadway network and accident pattern,

• Generating accident statistics for the selected location(s),
• Predicting accident potential for the selected location by using

sources for the estimates (Poisson and EB models or observed),
• Designating safety BS and assessing the effect of safety

countermeasures, and
• Visualizing the results of analysis spatially.

The following sample highway section was selected for analysis:

• Highway number: 401;
• From location: Highway 404 and Don Valley Parkway Inter-

change;
• To location: North York, Leslie Street and IC-373;
• LHRS number: 47635;
• Number of lanes: 12;
• Section length: 2.01 km; and
• AADT (1992):276,500.

Figures 3 and 4 illustrate a few trends in accident experience, which
can be generated for the preceding selected route sections along High-
way 401. Figure 3 illustrates the yearly variation in the observed
number of accidents from 1990 to 1993 for the highway section con-
sidered in this application. In general, between 600 and 700 accidents
can be expected per year along this stretch of Highway 401. The total
number of accidents per year does not vary appreciably from year to
year for the period 1990–1993.

Figure 4 illustrates the month-to-month variation in observed num-
ber of accidents for the period 1990–1993. If one assumes that travel
exposure (vehicle-kilometers per month) does not vary much from
month to month in a given year, one may note that the number of acci-
dents tends to be higher during November and December. This could
reflect the onset of winter driving conditions in southern Ontario,
which is expected to increase the potential for accidents.

After generating and analyzing accident statistics for the selected
locations, the expected number of accidents at the selected locations
for the period of interest can be estimated. Figure 5 provides an indi-
cation of the observed and expected number of accidents along the
selected section of Highway 401 based on the two prediction mod-
els, Poisson regression and EB. As expected, the number of acci-
dents predicted by the EB model is closer to the observed number
than are the values predicted by the Poisson model. Although this is
true for the entire selected section, it does not necessarily hold for
individual sections.

FIGURE 3 Yearly variation in observed number 
of accidents.

FIGURE 4 Monthly variation in observed number of 
accidents, 1992.

FIGURE 5 Model estimated/predicted number of accidents, 1992.

Again for the purpose of illustration, a number of BS sections
have been designated along the selected highway (401). The output
from this analysis is presented in scaled map form. A BS section is
defined as any section where the observed number of accidents
exceeds the predicted number by at least one standard deviation
from either the Poisson or the EB model estimate. Figure 6 shows
the Poisson model–designated BS sections along the test highway,
and Figure 7 shows the BS sections from the EB model.

By comparing Figures 6 and 7, it can be seen that the EB model
yielded fewer BS than did the Poisson regression model. The EB
model BS sections are largely included in the Poisson BS model BS
sample.

Another way to designate BS is to establish sections where fatal
accidents were observed. Figure 8 illustrates sections of the 400-level
highways in southern Ontario where fatal accidents were observed in
1992. For the Highway 401 test section, it can be seen that many sec-
tions with fatal accidents fall within sections that have been classified
as BS by either the Poisson regression or the EB model.

CONCLUSIONS

This paper described a GIS-based model for road accident pre-
diction and analysis. This model provides a seamless platform for
integrating and validating disparate data sources. Unlike many
existing transportation GIS models, the model presented here pre-
dicts accidents by using the state-of-the-art methods applied at a
different level of spatial aggregation as specified by the analyst.



FIGURE 6 Black spot sections as predicted by Poisson model.



FIGURE 7 Black spots as predicted by EB model.



The model can be used to evaluate the effectiveness of alternative
safety countermeasures designed to reduce accidents at unsafe
locations or routes.

A comparison was included of two methods for predicting acci-
dents and designating BS route sections. The EB method was found
to yield fewer BS locations. Accidents at BS locations can be ana-
lyzed further for their causes and consequences. This should help
analysts make decisions on safety countermeasures to implement at
individual locations.
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FIGURE 8 Fatal spots on 400-level highways in 1992.


